Imitation learning based on entropy-regularized forward and inverse reinforcement learning

08/17/2020 ∙ by Eiji Uchibe, et al. ∙ 11

This paper proposes Entropy-Regularized Imitation Learning (ERIL), which is a combination of forward and inverse reinforcement learning under the framework of the entropy-regularized Markov decision process. ERIL minimizes the reverse Kullback-Leibler (KL) divergence between two probability distributions induced by a learner and an expert. Inverse reinforcement learning (RL) in ERIL evaluates the log-ratio between two distributions using the density ratio trick, which is widely used in generative adversarial networks. More specifically, the log-ratio is estimated by building two binary discriminators. The first discriminator is a state-only function, and it tries to distinguish the state generated by the forward RL step from the expert's state. The second discriminator is a function of current state, action, and transitioned state, and it distinguishes the generated experiences from the ones provided by the expert. Since the second discriminator has the same hyperparameters of the forward RL step, it can be used to control the discriminator's ability. The forward RL minimizes the reverse KL estimated by the inverse RL. We show that minimizing the reverse KL divergence is equivalent to finding an optimal policy under entropy regularization. Consequently, a new policy is derived from an algorithm that resembles Dynamic Policy Programming and Soft Actor-Critic. Our experimental results on MuJoCo-simulated environments show that ERIL is more sample-efficient than such previous methods. We further apply the method to human behaviors in performing a pole-balancing task and show that the estimated reward functions show how every subject achieves the goal.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 30

page 31

page 32

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.