Imitation Learning-based Implicit Semantic-aware Communication Networks: Multi-layer Representation and Collaborative Reasoning
Semantic communication has recently attracted significant interest from both industry and academia due to its potential to transform the existing data-focused communication architecture towards a more generally intelligent and goal-oriented semantic-aware networking system. Despite its promising potential, semantic communications and semantic-aware networking are still at their infancy. Most existing works focus on transporting and delivering the explicit semantic information, e.g., labels or features of objects, that can be directly identified from the source signal. The original definition of semantics as well as recent results in cognitive neuroscience suggest that it is the implicit semantic information, in particular the hidden relations connecting different concepts and feature items that plays the fundamental role in recognizing, communicating, and delivering the real semantic meanings of messages. Motivated by this observation, we propose a novel reasoning-based implicit semantic-aware communication network architecture that allows multiple tiers of CDC and edge servers to collaborate and support efficient semantic encoding, decoding, and interpretation for end-users. We introduce a new multi-layer representation of semantic information taking into consideration both the hierarchical structure of implicit semantics as well as the personalized inference preference of individual users. We model the semantic reasoning process as a reinforcement learning process and then propose an imitation-based semantic reasoning mechanism learning (iRML) solution for the edge servers to leaning a reasoning policy that imitates the inference behavior of the source user. A federated GCN-based collaborative reasoning solution is proposed to allow multiple edge servers to jointly construct a shared semantic interpretation model based on decentralized knowledge datasets.
READ FULL TEXT