Image Segmentation Using Overlapping Group Sparsity
Sparse decomposition has been widely used for different applications, such as source separation, image classification and image denoising. This paper presents a new algorithm for segmentation of an image into background and foreground text and graphics using sparse decomposition. First, the background is represented using a suitable smooth model, which is a linear combination of a few smoothly varying basis functions, and the foreground text and graphics are modeled as a sparse component overlaid on the smooth background. Then the background and foreground are separated using a sparse decomposition framework and imposing some prior information, which promote the smoothness of background, and the sparsity and connectivity of foreground pixels. This algorithm has been tested on a dataset of images extracted from HEVC standard test sequences for screen content coding, and is shown to outperform prior methods, including least absolute deviation fitting, k-means clustering based segmentation in DjVu, and shape primitive extraction and coding algorithm.
READ FULL TEXT