Image processing

08/25/2014
by   Franco Rino, et al.
0

Gabor filters can extract multi-orientation and multiscale features from face images. Researchers have designed different ways to use the magnitude of the filtered results for face recognition: Gabor Fisher classifier exploited only the magnitude information of Gabor magnitude pictures (GMPs); Local Gabor Binary Pattern uses only the gradient information. In this paper, we regard GMPs as smooth surfaces. By completely describing the shape of GMPs, we get a face representation method called Gabor Surface Feature (GSF). First, we compute the magnitude, 1st and 2nd derivatives of GMPs, then binarize them and transform them into decimal values. Finally we construct joint histograms and use subspace methods for classification. Experiments on FERET, ORL and FRGC 1.0.4 database show the effectiveness of GSF.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro