Image Difficulty Curriculum for Generative Adversarial Networks (CuGAN)

10/20/2019
by   Petru Soviany, et al.
11

Despite the significant advances in recent years, Generative Adversarial Networks (GANs) are still notoriously hard to train. In this paper, we propose three novel curriculum learning strategies for training GANs. All strategies are first based on ranking the training images by their difficulty scores, which are estimated by a state-of-the-art image difficulty predictor. Our first strategy is to divide images into gradually more difficult batches. Our second strategy introduces a novel curriculum loss function for the discriminator that takes into account the difficulty scores of the real images. Our third strategy is based on sampling from an evolving distribution, which favors the easier images during the initial training stages and gradually converges to a uniform distribution, in which samples are equally likely, regardless of difficulty. We compare our curriculum learning strategies with the classic training procedure on two tasks: image generation and image translation. Our experiments indicate that all strategies provide faster convergence and superior results. For example, our best curriculum learning strategy applied on spectrally normalized GANs (SNGANs) fooled human annotators in thinking that generated CIFAR-like images are real in 25.0 the classic procedure fooled the annotators in only 18.4 image translation, the human annotators preferred the images produced by the Cycle-consistent GAN (CycleGAN) trained using curriculum learning in 40.5 cases and those produced by CycleGAN based on classic training in only 19.8 cases, 39.7% cases being labeled as ties.

READ FULL TEXT

page 2

page 4

page 7

page 8

research
07/24/2018

Improved Training with Curriculum GANs

In this paper we introduce Curriculum GANs, a curriculum learning strate...
research
04/29/2020

Training Curricula for Open Domain Answer Re-Ranking

In precision-oriented tasks like answer ranking, it is more important to...
research
09/22/2020

Curriculum Learning with Diversity for Supervised Computer Vision Tasks

Curriculum learning techniques are a viable solution for improving the a...
research
02/17/2021

Evolving GAN Formulations for Higher Quality Image Synthesis

Generative Adversarial Networks (GANs) have extended deep learning to co...
research
02/20/2021

Unsupervised Medical Image Alignment with Curriculum Learning

We explore different curriculum learning methods for training convolutio...
research
06/22/2023

Curriculum Knowledge Switching for Pancreas Segmentation

Pancreas segmentation is challenging due to the small proportion and hig...
research
07/07/2022

A Study on the Predictability of Sample Learning Consistency

Curriculum Learning is a powerful training method that allows for faster...

Please sign up or login with your details

Forgot password? Click here to reset