IDP-PGFE: An Interpretable Disruption Predictor based on Physics-Guided Feature Extraction

by   Chengshuo Shen, et al.

Disruption prediction has made rapid progress in recent years, especially in machine learning (ML)-based methods. Understanding why a predictor makes a certain prediction can be as crucial as the prediction's accuracy for future tokamak disruption predictors. The purpose of most disruption predictors is accuracy or cross-machine capability. However, if a disruption prediction model can be interpreted, it can tell why certain samples are classified as disruption precursors. This allows us to tell the types of incoming disruption and gives us insight into the mechanism of disruption. This paper designs a disruption predictor called Interpretable Disruption Predictor based On Physics-guided feature extraction (IDP-PGFE) on J-TEXT. The prediction performance of the model is effectively improved by extracting physics-guided features. A high-performance model is required to ensure the validity of the interpretation results. The interpretability study of IDP-PGFE provides an understanding of J-TEXT disruption and is generally consistent with existing comprehension of disruption. IDP-PGFE has been applied to the disruption due to continuously increasing density towards density limit experiments on J-TEXT. The time evolution of the PGFE features contribution demonstrates that the application of ECRH triggers radiation-caused disruption, which lowers the density at disruption. While the application of RMP indeed raises the density limit in J-TEXT. The interpretability study guides intuition on the physical mechanisms of density limit disruption that RMPs affect not only the MHD instabilities but also the radiation profile, which delays density limit disruption.


page 1

page 2

page 3

page 4


Transferable Cross-Tokamak Disruption Prediction with Deep Hybrid Neural Network Feature Extractor

Predicting disruptions across different tokamaks is a great obstacle to ...

The Definitions of Interpretability and Learning of Interpretable Models

As machine learning algorithms getting adopted in an ever-increasing num...

Massive MIMO Channel Prediction: Kalman Filtering vs. Machine Learning

This paper focuses on channel prediction techniques for massive multiple...

Scenario adaptive disruption prediction study for next generation burning-plasma tokamaks

Next generation high performance (HP) tokamaks risk damage from unmitiga...

Competition over data: how does data purchase affect users?

As machine learning (ML) is deployed by many competing service providers...

Competing AI: How does competition feedback affect machine learning?

This papers studies how competition affects machine learning (ML) predic...

The Edge of Orthogonality: A Simple View of What Makes BYOL Tick

Self-predictive unsupervised learning methods such as BYOL or SimSiam ha...

Please sign up or login with your details

Forgot password? Click here to reset