Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of Confounders

09/26/2013 ∙ by Eleni Sgouritsa, et al. ∙ 0

We propose a kernel method to identify finite mixtures of nonparametric product distributions. It is based on a Hilbert space embedding of the joint distribution. The rank of the constructed tensor is equal to the number of mixture components. We present an algorithm to recover the components by partitioning the data points into clusters such that the variables are jointly conditionally independent given the cluster. This method can be used to identify finite confounders.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.