Identifying Best Interventions through Online Importance Sampling

01/10/2017
by   Rajat Sen, et al.
0

Motivated by applications in computational advertising and systems biology, we consider the problem of identifying the best out of several possible soft interventions at a source node V in an acyclic causal directed graph, to maximize the expected value of a target node Y (located downstream of V). Our setting imposes a fixed total budget for sampling under various interventions, along with cost constraints on different types of interventions. We pose this as a best arm identification bandit problem with K arms where each arm is a soft intervention at V, and leverage the information leakage among the arms to provide the first gap dependent error and simple regret bounds for this problem. Our results are a significant improvement over the traditional best arm identification results. We empirically show that our algorithms outperform the state of the art in the Flow Cytometry data-set, and also apply our algorithm for model interpretation of the Inception-v3 deep net that classifies images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset