Identification of Invariant Sensorimotor Structures as a Prerequisite for the Discovery of Objects

10/11/2018
by   Nicolas Le Hir, et al.
2

Perceiving the surrounding environment in terms of objects is useful for any general purpose intelligent agent. In this paper, we investigate a fundamental mechanism making object perception possible, namely the identification of spatio-temporally invariant structures in the sensorimotor experience of an agent. We take inspiration from the Sensorimotor Contingencies Theory to define a computational model of this mechanism through a sensorimotor, unsupervised and predictive approach. Our model is based on processing the unsupervised interaction of an artificial agent with its environment. We show how spatio-temporally invariant structures in the environment induce regularities in the sensorimotor experience of an agent, and how this agent, while building a predictive model of its sensorimotor experience, can capture them as densely connected subgraphs in a graph of sensory states connected by motor commands. Our approach is focused on elementary mechanisms, and is illustrated with a set of simple experiments in which an agent interacts with an environment. We show how the agent can build an internal model of moving but spatio-temporally invariant structures by performing a Spectral Clustering of the graph modeling its overall sensorimotor experiences. We systematically examine properties of the model, shedding light more globally on the specificities of the paradigm with respect to methods based on the supervised processing of collections of static images.

READ FULL TEXT

page 4

page 12

page 14

research
10/03/2018

Grounding the Experience of a Visual Field through Sensorimotor Contingencies

Artificial perception is traditionally handled by hand-designing task sp...
research
06/07/2018

Discovering space - Grounding spatial topology and metric regularity in a naive agent's sensorimotor experience

In line with the sensorimotor contingency theory, we investigate the pro...
research
02/13/2020

On the Sensory Commutativity of Action Sequences for Embodied Agents

We study perception in the scenario of an embodied agent equipped with f...
research
06/03/2019

Self-supervised Body Image Acquisition Using a Deep Neural Network for Sensorimotor Prediction

This work investigates how a naive agent can acquire its own body image ...
research
06/13/2022

What Should I Know? Using Meta-gradient Descent for Predictive Feature Discovery in a Single Stream of Experience

In computational reinforcement learning, a growing body of work seeks to...
research
06/07/2021

SIMONe: View-Invariant, Temporally-Abstracted Object Representations via Unsupervised Video Decomposition

To help agents reason about scenes in terms of their building blocks, we...
research
11/13/2022

Build generally reusable agent-environment interaction models

This paper tackles the problem of how to pre-train a model and make it g...

Please sign up or login with your details

Forgot password? Click here to reset