Identification and classification of exfoliated graphene flakes from microscopy images using a hierarchical deep convolutional neural network

03/29/2022
by   Soroush Mahjoubi, et al.
0

Identification of the mechanically exfoliated graphene flakes and classification of the thickness is important in the nanomanufacturing of next-generation materials and devices that overcome the bottleneck of Moore's Law. Currently, identification and classification of exfoliated graphene flakes are conducted by human via inspecting the optical microscope images. The existing state-of-the-art automatic identification by machine learning is not able to accommodate images with different backgrounds while different backgrounds are unavoidable in experiments. This paper presents a deep learning method to automatically identify and classify the thickness of exfoliated graphene flakes on Si/SiO2 substrates from optical microscope images with various settings and background colors. The presented method uses a hierarchical deep convolutional neural network that is capable of learning new images while preserving the knowledge from previous images. The deep learning model was trained and used to classify exfoliated graphene flakes into monolayer (1L), bi-layer (2L), tri-layer (3L), four-to-six-layer (4-6L), seven-to-ten-layer (7-10L), and bulk categories. Compared with existing machine learning methods, the presented method possesses high accuracy and efficiency as well as robustness to the backgrounds and resolutions of images. The results indicated that our deep learning model has accuracy as high as 99 identifying and classifying exfoliated graphene flakes. This research will shed light on scaled-up manufacturing and characterization of graphene for advanced materials and devices.

READ FULL TEXT

page 3

page 10

page 11

page 12

page 13

research
09/23/2019

Hydrocephalus verification on brain magnetic resonance images with deep convolutional neural networks and "transfer learning" technique

The hydrocephalus can be either an independent disease or a concomitant ...
research
10/11/2022

EllipsoNet: Deep-learning-enabled optical ellipsometry for complex thin films

Optical spectroscopy is indispensable for research and development in na...
research
11/22/2021

MiNet: A Convolutional Neural Network for Identifying and Categorising Minerals

Identification of minerals in the field is a task that is wrought with m...
research
09/18/2020

SCREENet: A Multi-view Deep Convolutional Neural Network for Classification of High-resolution Synthetic Mammographic Screening Scans

Purpose: To develop and evaluate the accuracy of a multi-view deep learn...
research
07/02/2020

Learning-based Defect Recognition for Quasi-Periodic Microscope Images

The detailed control of crystalline material defects is a crucial proces...

Please sign up or login with your details

Forgot password? Click here to reset