Ideal-theoretic Explanation of Capacity-achieving Decoding

03/14/2021
by   Siddharth Bhandari, et al.
0

In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and their encoding is the residue modulo the ideals. We present an alternate way of viewing this class of codes in terms of linear operators, and show that this alternate view makes their algorithmic list-decodability amenable to analysis. Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes (which are themselves a special case of the broader class we explore). These codes are common generalizations of the well-studied Folded Reed-Solomon codes and Multiplicity codes, while also capturing the less-studied Additive Folded Reed-Solomon codes as well as a large family of codes that were not previously known/studied. More significantly our framework also captures the algorithmic list-decodability of the constituent codes. Specifically, we present a unified view of the decoding algorithm for ideal theoretic codes and show that the decodability reduces to the analysis of the distance of some related codes. We show that good bounds on this distance lead to capacity-achieving performance of the underlying code, providing a unifying explanation of known capacity-achieving results. In the specific case of affine Folded Reed-Solomon codes, our framework shows that they are list-decodable up to capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

05/03/2018

Improved decoding of Folded Reed-Solomon and Multiplicity Codes

In this work, we show new and improved error-correcting properties of fo...
09/13/2019

LDPC Codes Achieve List Decoding Capacity

We show that Gallager's ensemble of Low-Density Parity Check (LDPC) code...
03/11/2020

Beyond the Guruswami-Sudan (and Parvaresh-Vardy) Radii: Folded Reed-Solomon, Multiplicity and Derivative Codes

The classical family of Reed-Solomon codes consist of evaluations of pol...
02/01/2021

Distance Enumerators for Number-Theoretic Codes

The number-theoretic codes are a class of codes defined by single or mul...
12/02/2020

Decoding Multivariate Multiplicity Codes on Product Sets

The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of ...
11/11/2020

Efficient List-Decoding with Constant Alphabet and List Sizes

We present an explicit and efficient algebraic construction of capacity-...
10/09/2020

Lattice (List) Decoding Near Minkowski's Inequality

Minkowski proved that any n-dimensional lattice of unit determinant has ...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.