ICU Delirium Prediction Models: A Systematic Review

10/21/2019 ∙ by Matthew M. Ruppert, et al. ∙ 0

Purpose: Summarize ICU delirium prediction models published within the past five years. Methods: Electronic searches were conducted in April 2019 using PubMed, Embase, Cochrane Central, Web of Science, and CINAHL to identify peer reviewed studies published in English during the past five years that specifically addressed the development, validation, or recalibration of delirium prediction models in adult ICU populations. Data were extracted using CHARMS checklist elements for systematic reviews of prediction studies, including the following characteristics: study design, participant descriptions and recruitment methods, predicted outcomes, a priori candidate predictors, sample size, model development, model performance, study results, interpretation of those results, and whether the study included missing data. Results: Twenty studies featuring 26 distinct prediction models were included. Model performance varied greatly, as assessed by AUROC (0.68-0.94), specificity (56.5 from a single time point or window to predict the occurrence of delirium at any point during hospital or ICU admission, and lacked mechanisms for providing pragmatic, actionable predictions to clinicians. Conclusions: Although most ICU delirium prediction models have relatively good performance, they have limited applicability to clinical practice. Most models were static, making predictions based on data collected at a single time-point, failing to account for fluctuating conditions during ICU admission. Further research is needed to create clinically relevant dynamic delirium prediction models that can adapt to changes in individual patient physiology over time and deliver actionable predictions to clinicians.



There are no comments yet.


This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.