ICDAR 2021 Competition on Components Segmentation Task of Document Photos
This paper describes the short-term competition on Components Segmentation Task of Document Photos that was prepared in the context of the 16th International Conference on Document Analysis and Recognition (ICDAR 2021). This competition aims to bring together researchers working on the filed of identification document image processing and provides them a suitable benchmark to compare their techniques on the component segmentation task of document images. Three challenge tasks were proposed entailing different segmentation assignments to be performed on a provided dataset. The collected data are from several types of Brazilian ID documents, whose personal information was conveniently replaced. There were 16 participants whose results obtained for some or all the three tasks show different rates for the adopted metrics, like Dice Similarity Coefficient ranging from 0.06 to 0.99. Different Deep Learning models were applied by the entrants with diverse strategies to achieve the best results in each of the tasks. Obtained results show that the current applied methods for solving one of the proposed tasks (document boundary detection) are already well stablished. However, for the other two challenge tasks (text zone and handwritten sign detection) research and development of more robust approaches are still required to achieve acceptable results.
READ FULL TEXT