I-vector Transformation Using Conditional Generative Adversarial Networks for Short Utterance Speaker Verification

04/01/2018 ∙ by Jiacen Zhang, et al. ∙ 0

I-vector based text-independent speaker verification (SV) systems often have poor performance with short utterances, as the biased phonetic distribution in a short utterance makes the extracted i-vector unreliable. This paper proposes an i-vector compensation method using a generative adversarial network (GAN), where its generator network is trained to generate a compensated i-vector from a short-utterance i-vector and its discriminator network is trained to determine whether an i-vector is generated by the generator or the one extracted from a long utterance. Additionally, we assign two other learning tasks to the GAN to stabilize its training and to make the generated ivector more speaker-specific. Speaker verification experiments on the NIST SRE 2008 "10sec-10sec" condition show that our method reduced the equal error rate by 11.3

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.