I-vector Transformation Using Conditional Generative Adversarial Networks for Short Utterance Speaker Verification

04/01/2018
by   Jiacen Zhang, et al.
0

I-vector based text-independent speaker verification (SV) systems often have poor performance with short utterances, as the biased phonetic distribution in a short utterance makes the extracted i-vector unreliable. This paper proposes an i-vector compensation method using a generative adversarial network (GAN), where its generator network is trained to generate a compensated i-vector from a short-utterance i-vector and its discriminator network is trained to determine whether an i-vector is generated by the generator or the one extracted from a long utterance. Additionally, we assign two other learning tasks to the GAN to stabilize its training and to make the generated ivector more speaker-specific. Speaker verification experiments on the NIST SRE 2008 "10sec-10sec" condition show that our method reduced the equal error rate by 11.3

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset