HySTER: A Hybrid Spatio-Temporal Event Reasoner

01/17/2021 ∙ by Theophile Sautory, et al. ∙ 0

The task of Video Question Answering (VideoQA) consists in answering natural language questions about a video and serves as a proxy to evaluate the performance of a model in scene sequence understanding. Most methods designed for VideoQA up-to-date are end-to-end deep learning architectures which struggle at complex temporal and causal reasoning and provide limited transparency in reasoning steps. We present the HySTER: a Hybrid Spatio-Temporal Event Reasoner to reason over physical events in videos. Our model leverages the strength of deep learning methods to extract information from video frames with the reasoning capabilities and explainability of symbolic artificial intelligence in an answer set programming framework. We define a method based on general temporal, causal and physics rules which can be transferred across tasks. We apply our model to the CLEVRER dataset and demonstrate state-of-the-art results in question answering accuracy. This work sets the foundations for the incorporation of inductive logic programming in the field of VideoQA.



There are no comments yet.


page 3

page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.