Hypothesis Testing of Mixture Distributions using Compressed Data

11/29/2021
by   Minh Thành Vu, et al.
0

In this paper we revisit the binary hypothesis testing problem with one-sided compression. Specifically we assume that the distribution in the null hypothesis is a mixture distribution of iid components. The distribution under the alternative hypothesis is a mixture of products of either iid distributions or finite order Markov distributions with stationary transition kernels. The problem is studied under the Neyman-Pearson framework in which our main interest is the maximum error exponent of the second type of error. We derive the optimal achievable error exponent and under a further sufficient condition establish the maximum ϵ-achievable error exponent. It is shown that to obtain the latter, the study of the exponentially strong converse is needed. Using a simple code transfer argument we also establish new results for the Wyner-Ahlswede-Körner problem in which the source distribution is a mixture of iid components.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro