Hypergraphon Mean Field Games

03/30/2022
by   Kai Cui, et al.
0

We propose an approach to modelling large-scale multi-agent dynamical systems allowing interactions among more than just pairs of agents using the theory of mean-field games and the notion of hypergraphons, which are obtained as limits of large hypergraphs. To the best of our knowledge, ours is the first work on mean field games on hypergraphs. Together with an extension to a multi-layer setup, we obtain limiting descriptions for large systems of non-linear, weakly-interacting dynamical agents. On the theoretical side, we prove the well-foundedness of the resulting hypergraphon mean field game, showing both existence and approximate Nash properties. On the applied side, we extend numerical and learning algorithms to compute the hypergraphon mean field equilibria. To verify our approach empirically, we consider an epidemic control problem and a social rumor spreading model, where we give agents intrinsic motivation to spread rumors to unaware agents.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset