DeepAI AI Chat
Log In Sign Up

Hyperbolic Graph Convolutional Neural Networks

by   Ines Chami, et al.

Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCN operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1 classification, also improving state-of-the art on the Pubmed dataset.


page 4

page 15


Lorentzian Graph Convolutional Networks

Graph convolutional networks (GCNs) have received considerable research ...

Trivial bundle embeddings for learning graph representations

Embedding real-world networks presents challenges because it is not clea...

Constant Curvature Graph Convolutional Networks

Interest has been rising lately towards methods representing data in non...

HyLa: Hyperbolic Laplacian Features For Graph Learning

Due to its geometric properties, hyperbolic space can support high-fidel...

Free Hyperbolic Neural Networks with Limited Radii

Non-Euclidean geometry with constant negative curvature, i.e., hyperboli...

Non-linear Embeddings in Hilbert Simplex Geometry

A key technique of machine learning and computer vision is to embed disc...

CO-SNE: Dimensionality Reduction and Visualization for Hyperbolic Data

Hyperbolic space can embed tree metric with little distortion, a desirab...