Hyperbolic Generative Adversarial Network

02/10/2021 ∙ by Diego Lazcano, et al. ∙ 31

Recently, Hyperbolic Spaces in the context of Non-Euclidean Deep Learning have gained popularity because of their ability to represent hierarchical data. We propose that it is possible to take advantage of the hierarchical characteristic present in the images by using hyperbolic neural networks in a GAN architecture. In this study, different configurations using fully connected hyperbolic layers in the GAN, CGAN, and WGAN are tested, in what we call the HGAN, HCGAN, and HWGAN, respectively. The results are measured using the Inception Score (IS) and the Fréchet Inception Distance (FID) on the MNIST dataset. Depending on the configuration and space curvature, better results are achieved for each proposed hyperbolic versions than their euclidean counterpart.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 5

page 7

Code Repositories

Hyperbolic-Generative-Adversarial-Network

None


view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.