Hybrid TDOA/RSS Based Localization for Visible Light Systems

02/12/2018
by   Ertan Kazikli, et al.
0

In a visible light positioning (VLP) system, a receiver can estimate its location based on signals transmitted by light emitting diodes (LEDs). In this manuscript, we investigate a quasi-synchronous VLP system, in which the LED transmitters are synchronous among themselves but are not synchronized with the receiver. In quasi-synchronous VLP systems, position estimation can be performed by utilizing time difference of arrival (TDOA) information together with channel attenuation information, leading to a hybrid localization system. To specify accuracy limits for quasi-synchronous VLP systems, the Cramer-Rao lower bound (CRLB) on position estimation is derived in a generic three-dimensional scenario. Then, a direct positioning approach is adopted to obtain the maximum likelihood (ML) position estimator based directly on received signals from LED transmitters. In addition, a two-step position estimator is proposed, where TDOA and received signal strength (RSS) estimates are obtained in the first step and the position estimation is performed, based on the TDOA and RSS estimates, in the second step. The performance of the two-step positioning technique is shown to converge to that of direct positioning at high signal-to-noise ratios based on asymptotic properties of ML estimation. Finally, CRLBs and performance of the proposed positioning techniques are investigated through simulations.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
06/01/2021

Distance and Position Estimation in Visible Light Systems with RGB LEDs

In this manuscript, distance and position estimation problems are invest...
research
08/21/2018

Position Locationing for Millimeter Wave Systems

The vast amount of spectrum available for millimeter wave (mmWave) wirel...
research
04/02/2018

Cooperative Localization in Visible Light Networks: Theoretical Limits and Distributed Algorithms

Light emitting diode (LED) based visible light positioning (VLP) network...
research
03/07/2017

Indoor Localization Using Visible Light Via Fusion Of Multiple Classifiers

A multiple classifiers fusion localization technique using received sign...
research
05/02/2018

Visible Light Communications Based Indoor Positioning via Compressed Sensing

This paper presents an approach for visible light communication-based in...
research
09/02/2019

Dead on Arrival: An Empirical Study of The Bluetooth 5.1 Positioning System

The recently released Bluetooth 5.1 specification introduces fine-graine...
research
11/20/2020

Analysing the Data-Driven Approach of Dynamically Estimating Positioning Accuracy

The primary expectation from positioning systems is for them to provide ...

Please sign up or login with your details

Forgot password? Click here to reset