Hybrid Projection Methods with Recycling for Inverse Problems

07/01/2020
by   Julianne Chung, et al.
0

Iterative hybrid projection methods have proven to be very effective for solving large linear inverse problems due to their inherent regularizing properties as well as the added flexibility to select regularization parameters adaptively. In this work, we develop Golub-Kahan-based hybrid projection methods that can exploit compression and recycling techniques in order to solve a broad class of inverse problems where memory requirements or high computational cost may otherwise be prohibitive. For problems that have many unknown parameters and require many iterations, hybrid projection methods with recycling can be used to compress and recycle the solution basis vectors to reduce the number of solution basis vectors that must be stored, while obtaining a solution accuracy that is comparable to that of standard methods. If reorthogonalization is required, this may also reduce computational cost substantially. In other scenarios, such as streaming data problems or inverse problems with multiple datasets, hybrid projection methods with recycling can be used to efficiently integrate previously computed information for faster and better reconstruction. Additional benefits of the proposed methods are that various subspace selection and compression techniques can be incorporated, standard techniques for automatic regularization parameter selection can be used, and the methods can be applied multiple times in an iterative fashion. Theoretical results show that, under reasonable conditions, regularized solutions for our proposed recycling hybrid method remain close to regularized solutions for standard hybrid methods and reveal important connections among the resulting projection matrices. Numerical examples from image processing show the potential benefits of combining recycling with hybrid projection methods.

READ FULL TEXT

page 14

page 18

page 19

page 21

page 22

research
05/15/2021

Computational methods for large-scale inverse problems: a survey on hybrid projection methods

This paper surveys an important class of methods that combine iterative ...
research
03/30/2020

Hybrid Projection Methods for Large-scale Inverse Problems with Mixed Gaussian Priors

When solving ill-posed inverse problems, a good choice of the prior is c...
research
05/21/2021

Linearizability of eigenvector nonlinearities

We present a method to linearize, without approximation, a specific clas...
research
06/06/2023

A sketch-and-select Arnoldi process

A sketch-and-select Arnoldi process to generate a well-conditioned basis...
research
06/14/2022

Hybrid Projection Methods for Solution Decomposition in Large-scale Bayesian Inverse Problems

We develop hybrid projection methods for computing solutions to large-sc...
research
01/10/2023

First-projection-then-regularization hybrid algorithms for large-scale general-form regularization

The paper presents first-projection-then-regularization hybrid algorithm...
research
06/14/2023

Flexible Krylov Methods for Group Sparsity Regularization

This paper introduces new solvers for efficiently computing solutions to...

Please sign up or login with your details

Forgot password? Click here to reset