Hybrid Processing Design for Multipair Massive MIMO Relaying with Channel Spatial Correlation

08/27/2018
by   Milad Fozooni, et al.
0

Massive multiple-input multiple-output (MIMO) avails of simple transceiver design which can tackle many drawbacks of relay systems in terms of complicated signal processing, latency, and noise amplification. However, the cost and circuit complexity of having one radio frequency (RF) chain dedicated to each antenna element are prohibitive in practice. In this paper, we address this critical issue in amplify-and-forward (AF) relay systems using a hybrid analog and digital (A/D) transceiver structure. More specifically, leveraging the channel long-term properties, we design the analog beamformer which aims to minimize the channel estimation error and remain invariant over a long timescale. Then, the beamforming is completed by simple digital signal processing, i.e., maximum ratio combining/maximum ratio transmission (MRC/MRT) or zero-forcing (ZF) in the baseband domain. We present analytical bounds on the achievable spectral efficiency taking into account the spatial correlation and imperfect channel state information at the relay station. Our analytical results reveal that the hybrid A/D structure with ZF digital processor exploits spatial correlation and offers a higher spectral efficiency compared to the hybrid A/D structure with MRC/MRT scheme. Our numerical results showcase that the hybrid A/D beamforming design captures nearly 95 efficiency of a fully digital AF relaying topology even by removing half of the RF chains. It is also shown that the hybrid A/D structure is robust to coarse quantization, and even with 2-bit resolution, the system can achieve more than 93 infinite resolution phase shifters.

READ FULL TEXT
research
12/23/2017

Framework of Channel Estimation for Hybrid Analog-and-Digital Processing Enabled Massive MIMO Communications

We investigate a general channel estimation problem in the massive multi...
research
02/25/2019

Hybrid Beamforming: Where Should the Analog Power Amplifiers be Placed?

In this paper we study the spectral efficiency (SE) of a point-to-point ...
research
09/17/2018

Hybrid Block Diagonalization for Massive MIMO Two-Way Half-Duplex AF Hybrid Relay

We consider a multi-pair two-way amplify-and-forward massive multi-input...
research
02/17/2019

Spatial Channel Covariance Estimation for Hybrid Architectures Based on Tensor Decompositions

Spatial channel covariance information can replace full instantaneous ch...
research
12/10/2017

Hybrid Analog-Digital Beamforming for Massive MIMO Systems

In massive MIMO systems, hybrid beamforming is an essential technique fo...
research
01/13/2019

Periodic Analog Channel Estimation Aided Beamforming for Massive MIMO Systems

Analog beamforming is an attractive and cost-effective solution to explo...
research
01/29/2022

Full-Duplex Non-Coherent Communications for Massive MIMO Systems with Analog Beamforming

In this paper, a novel full-duplex non-coherent (FD-NC) transmission sch...

Please sign up or login with your details

Forgot password? Click here to reset