Hybrid Local-Global Transformer for Image Dehazing

09/15/2021 ∙ by Dong Zhao, et al. ∙ 0

Recently, the Vision Transformer (ViT) has shown impressive performance on high-level and low-level vision tasks. In this paper, we propose a new ViT architecture, named Hybrid Local-Global Vision Transformer (HyLoG-ViT), for single image dehazing. The HyLoG-ViT block consists of two paths, the local ViT path and the global ViT path, which are used to capture local and global dependencies. The hybrid features are fused via convolution layers. As a result, the HyLoG-ViT reduces the computational complexity and introduces locality in the networks. Then, the HyLoG-ViT blocks are incorporated within our dehazing networks, which jointly learn the intrinsic image decomposition and image dehazing. Specifically, the network consists of one shared encoder and three decoders for reflectance prediction, shading prediction, and haze-free image generation. The tasks of reflectance and shading prediction can produce meaningful intermediate features that can serve as complementary features for haze-free image generation. To effectively aggregate the complementary features, we propose a complementary features selection module (CFSM) to select the useful ones for image dehazing. Extensive experiments on homogeneous, non-homogeneous, and nighttime dehazing tasks reveal that our proposed Transformer-based dehazing network can achieve comparable or even better performance than CNNs-based dehazing models.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 12

page 13

page 14

page 15

page 16

page 17

page 18

page 19

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.