Hybrid full-field thermal characterization of additive manufacturing processes using physics-informed neural networks with data

06/15/2022
by   Shuheng Liao, et al.
10

Understanding the thermal behavior of additive manufacturing (AM) processes is crucial for enhancing the quality control and enabling customized process design. Most purely physics-based computational models suffer from intensive computational costs, thus not suitable for online control and iterative design application. Data-driven models taking advantage of the latest developed computational tools can serve as a more efficient surrogate, but they are usually trained over a large amount of simulation data and often fail to effectively use small but high-quality experimental data. In this work, we developed a hybrid physics-based data-driven thermal modeling approach of AM processes using physics-informed neural networks. Specifically, partially observed temperature data measured from an infrared camera is combined with the physics laws to predict full-field temperature history and to discover unknown material and process parameters. In the numerical and experimental examples, the effectiveness of adding auxiliary training data and using the technique of transfer learning on training efficiency and prediction accuracy, as well as the ability to identify unknown parameters with partially observed data, are demonstrated. The results show that the hybrid thermal model can effectively identify unknown parameters and capture the full-field temperature accurately, and thus it has the potential to be used in iterative process design and real-time process control of AM.

READ FULL TEXT

page 7

page 9

page 11

page 13

research
11/23/2021

Physics Informed Neural Networks for Control Oriented Thermal Modeling of Buildings

This paper presents a data-driven modeling approach for developing contr...
research
07/28/2019

A real-time iterative machine learning approach for temperature profile prediction in additive manufacturing processes

Additive Manufacturing (AM) is a manufacturing paradigm that builds thre...
research
09/06/2023

Towards Solving Industry-Grade Surrogate Modeling Problems using Physics Informed Machine Learning

Deep learning combined with physics-based modeling represents an attract...
research
05/14/2020

An Artificial-intelligence/Statistics Solution to Quantify Material Distortion for Thermal Compensation in Additive Manufacturing

In this paper, we introduce a probabilistic statistics solution or artif...
research
03/15/2022

A physics and data co-driven surrogate modeling approach for temperature field prediction on irregular geometric domain

In the whole aircraft structural optimization loop, thermal analysis pla...
research
01/02/2022

Transfer-learning-based Surrogate Model for Thermal Conductivity of Nanofluids

Heat transfer characteristics of nanofluids have been extensively studie...

Please sign up or login with your details

Forgot password? Click here to reset