Human versus Machine Attention in Deep Reinforcement Learning Tasks

10/29/2020 ∙ by Ruohan Zhang, et al. ∙ 65

Deep reinforcement learning (RL) algorithms are powerful tools for solving visuomotor decision tasks. However, the trained models are often difficult to interpret, because they are represented as end-to-end deep neural networks. In this paper, we shed light on the inner workings of such trained models by analyzing the pixels that they attend to during task execution, and comparing them with the pixels attended to by humans executing the same tasks. To this end, we investigate the following two questions that, to the best of our knowledge, have not been previously studied. 1) How similar are the visual features learned by RL agents and humans when performing the same task? and, 2) How do similarities and differences in these learned features correlate with RL agents' performance on these tasks? Specifically, we compare the saliency maps of RL agents against visual attention models of human experts when learning to play Atari games. Further, we analyze how hyperparameters of the deep RL algorithm affect the learned features and saliency maps of the trained agents. The insights provided by our results have the potential to inform novel algorithms for the purpose of closing the performance gap between human experts and deep RL agents.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 5

page 12

page 14

page 19

page 22

page 23

page 25

page 26

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.