HUJI-KU at MRP 2020: Two Transition-based Neural Parsers

10/12/2020
by   Ofir Arviv, et al.
0

This paper describes the HUJI-KU system submission to the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2020 Conference for Computational Language Learning (CoNLL), employing TUPA and the HIT-SCIR parser, which were, respectively, the baseline system and winning system in the 2019 MRP shared task. Both are transition-based parsers using BERT contextualized embeddings. We generalized TUPA to support the newly-added MRP frameworks and languages, and experimented with multitask learning with the HIT-SCIR parser. We reached 4th place in both the cross-framework and cross-lingual tracks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset