How to Pick the Best Source Data? Measuring Transferability for Heterogeneous Domains

12/23/2019
by   Seungcheol Park, et al.
0

Given a set of source data with pre-trained classification models, how can we fast and accurately select the most useful source data to improve the performance of a target task? We address the problem of measuring transferability for heterogeneous domains, where the source and the target data have different feature spaces and distributions. We propose Transmeter, a novel method to efficiently and accurately measure transferability of two datasets. Transmeter utilizes a pre-trained source classifier and a reconstruction loss to increase its efficiency and performance. Furthermore, Transmeter uses feature transformation layers, label-wise discriminators, and a mean distance loss to learn common representations for source and target domains. As a result, Transmeter and its variant give the most accurate performance in measuring transferability, while giving comparable running times compared to those of competitors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset