How Many Samples Required in Big Data Collection: A Differential Message Importance Measure
Information collection is a fundamental problem in big data, where the size of sampling sets plays a very important role. This work considers the information collection process by taking message importance into account. Similar to differential entropy, we define differential message importance measure (DMIM) as a measure of message importance for continuous random variable. It is proved that the change of DMIM can describe the gap between the distribution of a set of sample values and a theoretical distribution. In fact, the deviation of DMIM is equivalent to Kolmogorov-Smirnov statistic, but it offers a new way to characterize the distribution goodness-of-fit. Numerical results show some basic properties of DMIM and the accuracy of the proposed approximate values. Furthermore, it is also obtained that the empirical distribution approaches the real distribution with decreasing of the DMIM deviation, which contributes to the selection of suitable sampling points in actual system.
READ FULL TEXT