How Bad is Good enough: Noisy annotations for instrument pose estimation
Though analysis of Medical Images by Deep Learning achieves unprecedented results across various applications, the effect of noisy training annotations is rarely studied in a systematic manner. In Medical Image Analysis, most reports addressing this question concentrate on studying segmentation performance of deep learning classifiers. The absence of continuous ground truth annotations in these studies limits the value of conclusions for applications, where regression is the primary method of choice. In the application of surgical instrument pose estimation, where precision has a direct clinical impact on patient outcome, studying the effect of noisy annotations on deep learning pose estimation techniques is of supreme importance. Real x-ray images are inadequate for this evaluation due to the unavailability of ground truth annotations. We circumvent this problem by generating synthetic radiographs, where the ground truth pose is known and therefore the pose estimation error made by the medical-expert can be estimated from experiments. Furthermore, this study shows the property of deep neural networks to learn dominant signals from noisy annotations with sufficient data in a regression setting.
READ FULL TEXT