HOPF: Higher Order Propagation Framework for Deep Collective Classification

05/31/2018
by   Priyesh Vijayan, et al.
0

Given a graph wherein every node has certain attributes associated with it and some nodes have labels associated with them, Collective Classification (CC) is the task of assigning labels to every unlabeled node using information from the node as well as its neighbors. It is often the case that a node is not only influenced by its immediate neighbors but also by its higher order neighbors, multiple hops away. Recent state-of-the-art models for CC use differentiable variations of Weisfeiler-Lehman kernels to aggregate multi-hop neighborhood information. However, in this work, we show that these models suffer from the problem of Node Information Morphing wherein the information of the node is morphed or overwhelmed by the information of its neighbors when considering multiple hops. Further, existing models are not scalable as the memory and computation needs grow exponentially with the number of hops considered. To circumvent these problems, we propose a generic Higher Order Propagation Framework (HOPF) which includes (i) a differentiable Node Information Preserving (NIP) kernel and (ii) a scalable iterative learning and inferencing mechanism to aggregate information over larger hops. We do an extensive evaluation using 11 datasets from different domains and show that unlike existing CC models, our NIP model with iterative inference is robust across all the datasets and can handle much larger neighborhoods in a scalable manner.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset