Holistic Segmentation

09/12/2022
by   Stefano Gasperini, et al.
0

As panoptic segmentation provides a prediction for every pixel in input, non-standard and unseen objects systematically lead to wrong outputs. However, in safety-critical settings, robustness against out-of-distribution samples and corner cases is crucial to avoid dangerous behaviors, such as ignoring an animal or a lost cargo on the road. Since driving datasets cannot contain enough data points to properly sample the long tail of the underlying distribution, a method must deal with unknown and unseen scenarios to be deployed safely. Previous methods targeted part of this issue, by re-identifying already seen unlabeled objects. In this work, we broaden the scope proposing holistic segmentation: a task to identify and separate unseen unknown objects into instances, without learning from unknowns, while performing panoptic segmentation of known classes. We tackle this new problem with U3HS, which first finds unknowns as highly uncertain regions, then clusters the corresponding instance-aware embeddings into individual objects. By doing so, for the first time in panoptic segmentation with unknown objects, our U3HS is not trained with unknown data, thus leaving the settings unconstrained with respect to the type of objects and allowing for a holistic scene understanding. Extensive experiments and comparisons on two public datasets, namely Cityscapes and Lost Found as a transfer, demonstrate the effectiveness of U3HS in the challenging task of holistic segmentation, with competitive closed-set panoptic segmentation performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset