HistomicsML2.0: Fast interactive machine learning for whole slide imaging data

01/30/2020
by   Sanghoon Lee, et al.
13

Extracting quantitative phenotypic information from whole-slide images presents significant challenges for investigators who are not experienced in developing image analysis algorithms. We present new software that enables rapid learn-by-example training of machine learning classifiers for detection of histologic patterns in whole-slide imaging datasets. HistomicsML2.0 uses convolutional networks to be readily adaptable to a variety of applications, provides a web-based user interface, and is available as a software container to simplify deployment.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset