Higher-order retraction maps and construction of numerical methods for optimal control of mechanical systems
Retractions maps are used to define a discretization of the tangent bundle of the configuration manifold as two copies of the configuration manifold where the dynamics take place. Such discretization maps can be conveniently lifted to a higher-order tangent bundle to construct geometric integrators for the higher-order Euler-Lagrange equations. Given a cost function, an optimal control problem for fully actuated mechanical systems can be understood as a higher-order variational problem. In this paper we introduce the notion of a higher-order discretization map associated with a retraction map to construct geometric integrators for the optimal control of mechanical systems. In particular, we study applications to path planning for obstacle avoidance of a planar rigid body.
READ FULL TEXT