Higher-Order Implicit Fairing Networks for 3D Human Pose Estimation

11/01/2021
by   Jianning Quan, et al.
0

Estimating a 3D human pose has proven to be a challenging task, primarily because of the complexity of the human body joints, occlusions, and variability in lighting conditions. In this paper, we introduce a higher-order graph convolutional framework with initial residual connections for 2D-to-3D pose estimation. Using multi-hop neighborhoods for node feature aggregation, our model is able to capture the long-range dependencies between body joints. Moreover, our approach leverages residual connections, which are integrated by design in our network architecture, ensuring that the learned feature representations retain important information from the initial features of the input layer as the network depth increases. Experiments and ablations studies conducted on two standard benchmarks demonstrate the effectiveness of our model, achieving superior performance over strong baseline methods for 3D human pose estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset