High Quality Bidirectional Generative Adversarial Networks

05/28/2018
by   Duhyeon Bang, et al.
0

Generative adversarial networks (GANs) have achieved outstanding success in generating the high quality data. Focusing on the generation process, existing GANs investigate unidirectional mapping from the latent vector to the data. Later, various studies point out that the latent space of GANs is semantically meaningful and can be utilized in advanced data analysis and manipulation. In order to analyze the real data in the latent space of GANs, it is necessary to investigate the inverse generation mapping from the data to the latent vector. To tackle this problem, the bidirectional generative models introduce an encoder to enable the inverse path of generation process. Unfortunately, this effort leads to the degradation of generation quality because the imperfect generator rather interferes the encoder training and vice versa. In this paper, we propose a new inference model that estimates the latent vector from the feature of GAN discriminator. While existing bidirectional models learns the image to latent translation, our algorithm formulates this inference mapping by the feature to latent translation. It is important to note that training of our model is independent of the GAN training. Owing to the attractive nature of this independency, the proposed algorithm can generate the high quality samples identical to those of unidirectional GANs and also reconstruct the original data faithfully. Moreover, our algorithm can be employed to any unidirectional GAN, even the pre-traind GANs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset