High Performance Solution of Skew-symmetric Eigenvalue Problems with Applications in Solving the Bethe-Salpeter Eigenvalue Problem

12/09/2019
by   Carolin Penke, et al.
0

We present a high-performance solver for dense skew-symmetric matrix eigenvalue problems. Our work is motivated by applications in computational quantum physics, where one solution approach to solve the so-called Bethe-Salpeter equation involves the solution of a large, dense, skew-symmetric eigenvalue problem. The computed eigenpairs can be used to compute the optical absorption spectrum of molecules and crystalline systems. One state-of-the art high-performance solver package for symmetric matrices is the ELPA (Eigenvalue SoLvers for Petascale Applications) library. We extend the methods available in ELPA to skew-symmetric matrices. This way, the presented solution method can benefit from the optimizations available in ELPA that make it a well-established, efficient and scalable library, such as GPU support. We compare performance and scalability of our method to the only available high-performance approach for skew-symmetric matrices, an indirect route involving complex arithmetic. In total, we achieve a performance that is up to 3.67 higher than the reference method using Intel's ScaLAPACK implementation. The runtime to solve the Bethe-Salpeter-Eigenvalue problem can be improved by a factor of 10. Our method is freely available in the current release of the ELPA library.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset