High Performance Human Face Recognition using Independent High Intensity Gabor Wavelet Responses: A Statistical Approach

06/17/2011 ∙ by Arindam Kar, et al. ∙ 0

In this paper, we present a technique by which high-intensity feature vectors extracted from the Gabor wavelet transformation of frontal face images, is combined together with Independent Component Analysis (ICA) for enhanced face recognition. Firstly, the high-intensity feature vectors are automatically extracted using the local characteristics of each individual face from the Gabor transformed images. Then ICA is applied on these locally extracted high-intensity feature vectors of the facial images to obtain the independent high intensity feature (IHIF) vectors. These IHIF forms the basis of the work. Finally, the image classification is done using these IHIF vectors, which are considered as representatives of the images. The importance behind implementing ICA along with the high-intensity features of Gabor wavelet transformation is twofold. On the one hand, selecting peaks of the Gabor transformed face images exhibit strong characteristics of spatial locality, scale, and orientation selectivity. Thus these images produce salient local features that are most suitable for face recognition. On the other hand, as the ICA employs locally salient features from the high informative facial parts, it reduces redundancy and represents independent features explicitly. These independent features are most useful for subsequent facial discrimination and associative recall. The efficiency of IHIF method is demonstrated by the experiment on frontal facial images dataset, selected from the FERET, FRAV2D, and the ORL database.



There are no comments yet.


This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.