High Fidelity Visualization of What Your Self-Supervised Representation Knows About

12/16/2021
by   Florian Bordes, et al.
7

Discovering what is learned by neural networks remains a challenge. In self-supervised learning, classification is the most common task used to evaluate how good a representation is. However, relying only on such downstream task can limit our understanding of how much information is retained in the representation of a given input. In this work, we showcase the use of a conditional diffusion based generative model (RCDM) to visualize representations learned with self-supervised models. We further demonstrate how this model's generation quality is on par with state-of-the-art generative models while being faithful to the representation used as conditioning. By using this new tool to analyze self-supervised models, we can show visually that i) SSL (backbone) representation are not really invariant to many data augmentation they were trained on. ii) SSL projector embedding appear too invariant for tasks like classifications. iii) SSL representations are more robust to small adversarial perturbation of their inputs iv) there is an inherent structure learned with SSL model that can be used for image manipulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset