High-fidelity Direct Contrast Synthesis from Magnetic Resonance Fingerprinting

by   Ke Wang, et al.

Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.


page 3

page 4

page 6

page 10

page 11

page 13

page 15

page 16


Generalizable synthetic MRI with physics-informed convolutional networks

In this study, we develop a physics-informed deep learning-based method ...

Generative Adversarial Training for MRA Image Synthesis Using Multi-Contrast MRI

Magnetic Resonance Angiography (MRA) has become an essential MR contrast...

Low-field magnetic resonance image enhancement via stochastic image quality transfer

Low-field (<1T) magnetic resonance imaging (MRI) scanners remain in wide...

Semi-supervised mp-MRI Data Synthesis with StitchLayer and Auxiliary Distance Maximization

In this paper, we address the problem of synthesizing multi-parameter ma...

Image Synthesis in Multi-Contrast MRI with Conditional Generative Adversarial Networks

Acquiring images of the same anatomy with multiple different contrasts i...

Contrast Adaptive Tissue Classification by Alternating Segmentation and Synthesis

Deep learning approaches to the segmentation of magnetic resonance image...

Accelerated and Quantitative 3D Semisolid MT/CEST Imaging using a Generative Adversarial Network (GAN-CEST)

Purpose: To substantially shorten the acquisition time required for quan...

Please sign up or login with your details

Forgot password? Click here to reset