High Dimensional Data Enrichment: Interpretable, Fast, and Data-Efficient

06/11/2018
by   Amir Asiaee T., et al.
0

High dimensional structured data enriched model describes groups of observations by shared and per-group individual parameters, each with its own structure such as sparsity or group sparsity. In this paper, we consider the general form of data enrichment where data comes in a fixed but arbitrary number of groups G. Any convex function, e.g., norms, can characterize the structure of both shared and individual parameters. We propose an estimator for high dimensional data enriched model and provide conditions under which it consistently estimates both shared and individual parameters. We also delineate sample complexity of the estimator and present high probability non-asymptotic bound on estimation error of all parameters. Interestingly the sample complexity of our estimator translates to conditions on both per-group sample sizes and the total number of samples. We propose an iterative estimation algorithm with linear convergence rate and supplement our theoretical analysis with synthetic and real experimental results. Particularly, we show the predictive power of data-enriched model along with its interpretable results in anticancer drug sensitivity analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset