High-dimensional covariance estimation based on Gaussian graphical models

09/02/2010
by   Shuheng Zhou, et al.
0

Undirected graphs are often used to describe high dimensional distributions. Under sparsity conditions, the graph can be estimated using ℓ_1-penalization methods. We propose and study the following method. We combine a multiple regression approach with ideas of thresholding and refitting: first we infer a sparse undirected graphical model structure via thresholding of each among many ℓ_1-norm penalized regression functions; we then estimate the covariance matrix and its inverse using the maximum likelihood estimator. We show that under suitable conditions, this approach yields consistent estimation in terms of graphical structure and fast convergence rates with respect to the operator and Frobenius norm for the covariance matrix and its inverse. We also derive an explicit bound for the Kullback Leibler divergence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset