Hierarchical Multitask Learning for CTC-based Speech Recognition
Previous work has shown that neural encoder-decoder speech recognition can be improved with hierarchical multitask learning, where auxiliary tasks are added at intermediate layers of a deep encoder. We explore the effect of hierarchical multitask learning in the context of connectionist temporal classification (CTC)-based speech recognition, and investigate several aspects of this approach. Consistent with previous work, we observe performance improvements on telephone conversational speech recognition (specifically the Eval2000 test sets) when training a subword-level CTC model with an auxiliary phone loss at an intermediate layer. We analyze the effects of a number of experimental variables (like interpolation constant and position of the auxiliary loss function), performance in lower-resource settings, and the relationship between pretraining and multitask learning. We observe that the hierarchical multitask approach improves over standard multitask training in our higher-data experiments, while in the low-resource settings standard multitask training works well. The best results are obtained by combining hierarchical multitask learning and pretraining, which improves word error rates by 3.4 the Eval2000 test sets.
READ FULL TEXT