Hierarchical (Deep) Echo State Networks with Uncertainty Quantification for Spatio-Temporal Forecasting
Long-lead forecasting for spatio-temporal problems can often entail complex nonlinear dynamics that are difficult to specify it a priori. Current statistical methodologies for modeling these processes are often overparameterized and thus, struggle from a computational perspective. One potential parsimonious solution to this problem is a method from the dynamical systems and engineering literature referred to as an echo state network (ESN). ESN models use so-called reservoir computing to efficiently estimate a dynamical neural network forecast, model referred to as a recurrent neural network (RNN). Moreover, so-called deep models have recently been shown to be successful at predicting high-dimensional complex nonlinear processes. These same traits can be used to characterize many spatio-temporal processes. Here we introduce a deep ensemble ESN (D-EESN) model. Through the use of an ensemble framework, this model is able to generate forecasts that are accompanied by uncertainty estimates. After introducing the D-EESN, we then develop a hierarchical Bayesian implementation. We use a general hierarchical Bayesian framework that accommodates non-Gaussian data types and multiple levels of uncertainties. The proposed methodology is first applied to a data set simulated from a novel non-Gaussian multiscale Lorenz-96 dynamical system simulation model and then to a long-lead United States (U.S.) soil moisture forecasting application.
READ FULL TEXT