Hierarchical Critics Assignment for Multi-agent Reinforcement Learning
In this paper, we investigate the use of global information to speed up the learning process and increase the cumulative rewards of multi-agent reinforcement learning (MARL) tasks. Within the actor-critic MARL, we introduce multiple cooperative critics from two levels of the hierarchy and propose a hierarchical critic-based multi-agent reinforcement learning algorithm. In our approach, the agent is allowed to receive information from local and global critics in a competition task. The agent not only receives low-level details but also consider coordination from high levels that receiving global information to increase operation skills. Here, we define multiple cooperative critics in the top-bottom hierarchy, called the Hierarchical Critics Assignment (HCA) framework. Our experiment, a two-player tennis competition task in the Unity environment, tested HCA multi-agent framework based on Asynchronous Advantage Actor-Critic (A3C) with Proximal Policy Optimization (PPO) algorithm. The results showed that the HCA- framework outperforms the non-hierarchical critics baseline method for MARL tasks.
READ FULL TEXT