Hidden Cosets and Applications to Unclonable Cryptography

07/12/2021 ∙ by Andrea Coladangelo, et al. ∙ 0

In this work, we study a generalization of hidden subspace states to hidden coset states (first introduced by Aaronson and Christiano [STOC '12]). This notion was considered independently by Vidick and Zhang [Eurocrypt '21], in the context of proofs of quantum knowledge from quantum money schemes. We explore unclonable properties of coset states and several applications: - We show that assuming indistinguishability obfuscation (iO), hidden coset states possess a certain direct product hardness property, which immediately implies a tokenized signature scheme in the plain model. Previously, it was known only relative to an oracle, from a work of Ben-David and Sattath [QCrypt '17]. - Combining a tokenized signature scheme with extractable witness encryption, we give a construction of an unclonable decryption scheme in the plain model. The latter primitive was recently proposed by Georgiou and Zhandry [ePrint '20], who gave a construction relative to a classical oracle. - We conjecture that coset states satisfy a certain natural (information-theoretic) monogamy-of-entanglement property. Assuming this conjecture is true, we remove the requirement for extractable witness encryption in our unclonable decryption construction, by relying instead on compute-and-compare obfuscation for the class of unpredictable distributions. - Finally, we give a construction of a copy-protection scheme for pseudorandom functions (PRFs) in the plain model. Our scheme is secure either assuming iO, OWF, and extractable witness encryption, or assuming iO, OWF, compute-and-compare obfuscation for the class of unpredictable distributions, and the conjectured monogamy property mentioned above. This is the first example of a copy-protection scheme with provable security in the plain model for a class of functions that is not evasive.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.