Heterogeneous Graph Collaborative Filtering

11/13/2020 ∙ by Zekun Li, et al. ∙ 5

Graph-based collaborative filtering (CF) algorithms have gained increasing attention. Existing work in this literature usually models the user-item interactions as a bipartite graph, where users and items are two isolated node sets and edges between them indicate their interactions. Then, the unobserved preference of users can be exploited by modeling high-order connectivity on the bipartite graph. In this work, we propose to model user-item interactions as a heterogeneous graph which consists of not only user-item edges indicating their interaction but also user-user edges indicating their similarity. We develop heterogeneous graph collaborative filtering (HGCF), a GCN-based framework which can explicitly capture both the interaction signal and similarity signal through embedding propagation on the heterogeneous graph. Since the heterogeneous graph is more connected than the bipartite graph, the sparsity issue can be alleviated and the demand for expensive high-order connectivity modeling can be lowered. Extensive experiments conducted on three public benchmarks demonstrate its superiority over the state-of-the-arts. Further analysis verifies the importance of user-user edges in the graph, justifying the rationality and effectiveness of HGCF.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.