Hennessy-Milner Theorems via Galois Connections
We introduce a general and compositional, yet simple, framework that allows us to derive soundness and expressiveness results for modal logics characterizing behavioural equivalences or metrics (also known as Hennessy-Milner theorems). It is based on Galois connections between sets of (real-valued) predicates on the one hand and equivalence relations/metrics on the other hand and covers a part of the linear-time-branching-time spectrum, both for the qualitative case (behavioural equivalences) and the quantitative case (behavioural metrics). We derive behaviour functions from a given logic and give a condition, called compatibility, that characterizes under which conditions a logically induced equivalence/metric is induced by a fixpoint equation. In particular this framework allows us to derive a new fixpoint characterization of directed trace metrics.
READ FULL TEXT