DeepAI AI Chat
Log In Sign Up

Help Me Find a Job: A Graph-based Approach for Job Recommendation at Scale

01/01/2018
by   Walid Shalaby, et al.
CareerBuilder, LLC
University of Georgia
UNC Charlotte
0

Online job boards are one of the central components of modern recruitment industry. With millions of candidates browsing through job postings everyday, the need for accurate, effective, meaningful, and transparent job recommendations is apparent more than ever. While recommendation systems are successfully advancing in variety of online domains by creating social and commercial value, the job recommendation domain is less explored. Existing systems are mostly focused on content analysis of resumes and job descriptions, relying heavily on the accuracy and coverage of the semantic analysis and modeling of the content in which case, they end up usually suffering from rigidity and the lack of implicit semantic relations that are uncovered from users' behavior and could be captured by Collaborative Filtering (CF) methods. Few works which utilize CF do not address the scalability challenges of real-world systems and the problem of cold-start. In this paper, we propose a scalable item-based recommendation system for online job recommendations. Our approach overcomes the major challenges of sparsity and scalability by leveraging a directed graph of jobs connected by multi-edges representing various behavioral and contextual similarity signals. The short lived nature of the items (jobs) in the system and the rapid rate in which new users and jobs enter the system make the cold-start a serious problem hindering CF methods. We address this problem by harnessing the power of deep learning in addition to user behavior to serve hybrid recommendations. Our technique has been leveraged by CareerBuilder.com which is one of the largest job boards in the world to generate high-quality recommendations for millions of users.

READ FULL TEXT

page 1

page 2

page 3

page 4

01/19/2023

Job recommendations: benchmarking of collaborative filtering methods for classifieds

Classifieds provide many challenges for recommendation methods, due to t...
05/28/2019

Job Recommendation through Progression of Job Selection

Job recommendation has traditionally been treated as a filter-based matc...
11/08/2021

Creative Compensation (CC): Future of Jobs with Creative Works in 3D Printing

With the continuous growth of online 3D printing community and the democ...
11/21/2017

Beyond Accuracy Optimization: On the Value of Item Embeddings for Student Job Recommendations

In this work, we address the problem of recommending jobs to university ...
09/12/2022

A challenge-based survey of e-recruitment recommendation systems

E-recruitment recommendation systems recommend jobs to job seekers and j...
09/20/2016

Semantic Similarity Strategies for Job Title Classification

Automatic and accurate classification of items enables numerous downstre...
04/30/2020

Learning to Ask Screening Questions for Job Postings

At LinkedIn, we want to create economic opportunity for everyone in the ...