Health Analytics: a systematic review of approaches to detect phenotype cohorts using electronic health records
The paper presents a systematic review of state-of-the-art approaches to identify patient cohorts using electronic health records. It gives a comprehensive overview of the most commonly de-tected phenotypes and its underlying data sets. Special attention is given to preprocessing of in-put data and the different modeling approaches. The literature review confirms natural language processing to be a promising approach for electronic phenotyping. However, accessibility and lack of natural language process standards for medical texts remain a challenge. Future research should develop such standards and further investigate which machine learning approaches are best suited to which type of medical data.
READ FULL TEXT