Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation

02/23/2018
by   Yudong Chen, et al.
0

Low-rank modeling plays a pivotal role in signal processing and machine learning, with applications ranging from collaborative filtering, video surveillance, medical imaging, to dimensionality reduction and adaptive filtering. Many modern high-dimensional data and interactions thereof can be modeled as lying approximately in a low-dimensional subspace or manifold, possibly with additional structures, and its proper exploitations lead to significant reduction of costs in sensing, computation and storage. In recent years, there is a plethora of progress in understanding how to exploit low-rank structures using computationally efficient procedures in a provable manner, including both convex and nonconvex approaches. On one side, convex relaxations such as nuclear norm minimization often lead to statistically optimal procedures for estimating low-rank matrices, where first-order methods are developed to address the computational challenges; on the other side, there is emerging evidence that properly designed nonconvex procedures, such as projected gradient descent, often provide globally optimal solutions with a much lower computational cost in many problems. This survey article will provide a unified overview of these recent advances on low-rank matrix estimation from incomplete measurements. Attention is paid to rigorous characterization of the performance of these algorithms, and to problems where the low-rank matrix have additional structural properties that require new algorithmic designs and theoretical analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset